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I 

INTRODUCTION 

Any attempt  to  classify or organize  the  tremendous body of existing  theory of 

antennas is certain  to  lead  almost  immediately  to  the  distinction  between  the  analy- 

sis p rob leq  i. e. the  determination of field  patterns or  radiation  characteristics of 

given  antenna  forms, and the  synthesis  problem, i. e. that of determining  the  form 

and excitation of an  antenna  which  will  produce a prescribed  field  pattern. The two 

problems are of roughly  equal  practical  importance, but the  latter,  being  inherently 

less well  defined  and  straightforward and therefore  more  difficult,  has  received a 

rather  meager  share of the  attention. A number of significant  contributions  have 

appeared  recently,  however,  some of which a r e  noted below,  and the  present  report 

is an  attempt  to  extend and clarify  some of the  results and conclusions  reached. 

The  choice of the  particular  questions  considered  here was motivated  initially 

by a problem  in satellite communication.  Simply  stated,  the  requirement is for a 

flush-mounted  antenna on an  essentially  cylindrical body which will  produce a far- 

field  pattern of sufficient  uniformity so that  radio  contact  can  be  maintained at any 

orientation  within a certain  angdar  region.  Disregarding  the  questions of implemen- 

tation,  which are by no means  trivial, we are  left  with  considerable  leeway  in the 

formulation of an  appropriate  analytical  problem.  Further  restrictions,  however, 

a r e  afforded by considerations of simplicity and feasibility of solution, and we ac- 

cordingly  limit  ourselves  here  to  the  problem of determining  the  excitations  requird 

in  slots of various types in  the  surface of a conducting  infinite  cylinder  in  order  to 

produce  the  best  approximation  in a certain  sense,  to  certain  prescribed  far-field 

radiation  patterns. 

To the  best of our knowledge the  treatment  presented  here is essentially new. 

However, there are numerous  recent  papers  whose  substance is related in some 

degree  to  that of the  present  report and  which  deserve  some  mention as antecedents 
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and sources of inspiration.  Results  obtained  for  the  radiated  fields of slotted  cylin- 

ders with  specified  excitation are legion. A comprehensive  bibliography of these is 

contained  in  the book by Wait  (1959), and  among  the  more  recent  contributions are 

papers by Knudsen (1959), Nishida (1960), Logan,  Mason  and Yee (1962) and Hasser- 

jian and Ishimaru (1962a,  b).  Solutions of synthesis  problems  for  such  structures 

are,  however, few. Notable  among  these are the results of Wait and Householder 

(1959), who developed a procedure  for  synthesizing a given  radiation  pattern by 

means of a  cylinder  excited by a circumferential  array of axial slots, and  DuHamel 

(1952), who considered  antenna  arrays on circular,  elliptical,  and  spherical  sur- 

faces, and proved  for  the  circular case that  the  radiation  pattern  obtained  with a 

certain  minimum  number of antennas  differs by  only a few percent  from  that  pro- 

duced when the  antennas are replaced by a continuous  current  distribution. 

The  literature on the  synthesis  problem  for a single  aperture on a conducting 

cylinder is even  more  sparse.  The  authors are currently  aware of no other  investi- 

gations  which treat  such a problem  explicitly.  There are a number of papers, 

however,  which  deal  with  single  apertures of various  shapes  in  infinite  conducting 

plane  screens,  employing  formulations  and  techniques similar to  some of those  used 

here  for  the  cylindrical  case. Among these we note  the  following.  Various  extre- 

mal  problems,  with  the  common  stipulation of a fixed  number of spherical  wave 

function  in  the  field  representations,  have  been  considered by Chu (1948) and 

Harrington (1957), the  variational  quantities  being  the gain,  quality  factor,  the  ratio 

of these, and the  side  lobe  level  for  given  main  beam  width.  The  problem of finding 

a pattern  function  which  takes  given  values at a certain  number of specified  points 

and  which  minimizes  the  square  integral of its corresponding  aperture  function  was 

treated by Woodward  and  Lawson  (1948)  and by Yen (1957). Determination of the 

aperture  function  specifiable  with a given  number of harmonics  which  minimizes 

the  sidelobe  level  for  given  width of the  main  beam  was  carried  out by Taylor (1955), 
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Mittra (1959) and Fel'd  and  Bakhrakh (1963). The latter paper,  along  with  one by 

Kovics  and  Solymir (1956), deals  also  with  the  question of the  best  mean-square 

approximation  over  the  whole  space  (visible  and  invisible)  to a function  which  equals 

some  given  function  in  the  visible  region  and  vanishes  outside it. Solymgr (1958) 

and  Collin  and  Rothschild (1963) consider  the  maximization of the  directivity  with a 

given  number of harmonics in the  aperture  function  and a specified  value of the  super- 

gain  ratio  or  quality  factor. In a paper by Ling, Lefferts,  Lee and  Potenza (1964) 

the  normalized  second  moment of the  far-field  power  pattern is minimized  for 

various  plane  aperture  shapes,  including  the  rectangle,  circle, annulus and ellipse. 

Finally,  in a mathematically  elegant  analysis,  Rhodes (1963) has exhibited  the  opti- 

mum  mean-square  approximation  to a given pattern  function  with a fixed  number of 

termsin tlle aperture  field  representation and a given  value of the  supergain  ratio, 

as defined by Taylor (1955). 

It  might  he  observed  here  that all of the  above  analyses  concern  themselves 

with field  strength rather than  power  patterns.  The  only  valid  example of power 

pattern  synthesis Imown to the  authors at present is a paper by Caprioli,  Scheggi 

and Toraldo  di  Francia (1961) which  makes  use of a technique of interpolation  between 

sampling  points. 

A s  remarked  above,  some of the  formulations  and  techniques  developed  in  the 

treatment of plane  apertures  have a direct bearing  on  the  cylindrical  problem. How- 

ever,  there  are  several  important  differences  here  which  limit  their.  applicability 

and necessitate  certain  modifications. Lf one  attempts,  for  example,  to follow the 

procedure of Rhodes (1963), it develops  immediately  that  the  kernel of the  integral 

equation  relating  the  aperture and far fields  in  the  cylindrical case is not  symmetric, 

and thus  possesses no orthogonal set of eigenfunctions. One of the  principal features 

of Rhodes  method,  namely  the  orthogonality of the set of pattern  functions  corres- 

ponding  to an orthogonal set of aperture  functions, is therefore  not  available  here, 
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and the  solution of a system of linear  equations  apparently  cannot  be  avoided.  Cer- 

tain  extrema1  properties of the  eigenfunctions  for  the  plane  case  are  also  lacking in 

the  cylindrical  case.  Even  more  important,  perhaps, is the  fact  that  whereas  in 

the  plane  case all the known pattern  synthesis  procedures  yield  anapproximating  pat- 

tern which is real if the  prescribed  pattern is, this  does not  hold for the cylindrical 

case. A s  a consequence, it turns  out  that  here  the  best  admissible  mean-square 

approximation  to a given real pattern may be  an  extremely  poor  approximation i n  

amplitude. 

These  are  among  the  principal  considerations  which  governed  the  formulation 

of the  problems  treated  in  the  present  report.  The  choice of the  mean-square  devia- 

tion as the  measure of the  degree of approximation is more  or  less  mandatory  from 

an algebraic  standpoint.  Since it appears  that  there is little to  be  gained  in  the  cylin- 

drical  case  through  the  use of special  basis  functions, we have  employed only  expon- 

ential or trigonometric  functions,  with  the  inclusion of a weight factor in  some  cases 

which satisfies an edge  condition at the  slot  boundaries.  Because  the  amplitude of 

the  radiation  pattern far outweighs  the  phase in practical  importance,  an  iteration 

scheme was developed  for  the  case of a single  slot,  in  which  the  phase of the  pre- 

scribed  pattern is sacrificed  for  the  sake of substantially  improving  the  amplitude 

approximation. This scheme  has not been  used  for  numerical  computations  in  cases 

with  multiple  slots  such as those  considered  in  Section III, though there  seems  to  be 

no reason why it could  not  be. 

The  authors  wish  to  acknowledge the considerable and sustained  efforts of cer- 

tain  colleagues, in particular D.R. Hodgins, T. L. Boynton, J . A .  Rodnite, J . A .  

Ducmanis and Miss Aust ra  Maldups, who programmed  the  numerical work reported 

here.  Credit is also due to  the  University of Michigan  Computing Facility, which 

actually  produced  the  numbers. 
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11 

THE SYNTHESIS PROBLEM WITH  CONTINUOUS  SOURCE DISTRIBUTIONS 

2. 1 Plane Aperture 

Consider a finite  aperture S in an infinite  conducting screen  lying  in  theyz 

plane of a rectangular  coordinate  system and introduce  polar  coordinates 

x=r sin e cos 8, y=r   s in  8 sin $4, z=r  cos  e . 

It is well known that  the far field  can  be  expressed  in  terms of the  distribution  over 

the  aperture of the  tangential  components of the  electric  field  strength  (Silver, 1949). 

Thus it is found that 

ikr -ik e . - 

exp  -ik(y sin 8 sin $4+z cos e )  dydz , II. 1 
(2 .2)  

where  the  time  dependence e-iwt is everywhere  suppressed. 

By virtue of Babinet's  principle  the  substitution 3 +,I" st -E - makes 

(2.1) and (2.2) valid  also  for  the  complementary  problems  where  the  fields  are 

caused by surface  currents H H on a conducting  plane  disk of the  same  shape  as 

the  aperture. 
z' Y 

If we assume  the  aperture  to  be  rectangular  and  aperture  field  linearly  polari- 

zed  (say E =0) and  separable, that is Ez(O,y,z)=el(y)-  e2(z),  the  radiation  pattern  in. 
Y 
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the xy and xz  planes  depends  solely on el(y) and  e2(z)  respectively. Thus the  pro- 

blem of synthesizing  the  radiation  patterns  in  the  main  planes  in this case simpli- 

fies to  finding two independent  one-dimensional  aperture  distributions. 

The  synthesis  problem is usually  formulated as such  a  one-dimensional 

problem.  For  a  general  rectangular  aperture  the  assumptions of a  separable and 

linearly  polarized  aperture  field  seem  quite  questionable  (c.f.  Collin, 1964)  but 

for  a  narrow  slot (width <X/ 10) they are  certainly  accurate enough.  One  other 

case in which a  one-dimensional  aperture  distribution  can be used is when the 

aperture is infinite in one direction and the  derivatives of all field  components 

with respect to that  direction  vanish. 

We can now write  the  relation  between  the  radiation  pattern and the  aperture 

field as kL 
2 

g(E> = f(rl)dr) , 151,<1 J (2.3) 

where  the  physical  significance of the  functions f, g in  the cases of an infinite  slot 

and a line  current is given  in  Table II-1. The  notation  corresponds  to  Fig. 2-1. 

It is natural  to  restrict  the  functions  g and f in eq. (2. 3) to  be  complex  valued 

functions,  square  integrable  over  the  interval (-1, 1) (notations: f, g, E L2). It 

was early reco-@zed that  the  synthesis  problem as expressed by (2.3) has  the 

following properties (see Bouwkamp  and DeBruijn, 1946). 

a) For an  arbitrary  function h( < ) E  L2, there is in  general no aperture 

function  f(q) E L2 such  that  the  corresponding  pattern  function  g(e)= 

M E ) .  
b) We can  obtain,  however,  for  every  positive quantity E an aperture 

function f(q) E L2 whose  corresponding  g(c) satisfies 
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PLANE APERTURE 

TM  FIELD 

i(kp- c) 4 kL e E - E  
P -0 

0 2- cos  g(sin @) 
Z 

TE  FIELD 

E (0, y)=EO f(y) 2Y 
Y 

LINE  SOURCE 

TABLE II-1: RELATION OF PHYSICAL FIELD QUANTITIES TO THE APERTURE AND 
PATTERN FUNCTIONS OF Eq. (2.3). 



/ 

FIG. 2-1: APERTURE IN AN INFINITE  SCREEN AND LINE SOURCE 

There  is,  thus,  in  general no 'exact  solution' of the  synthesis  problem  but we  can 

approximate  any  prescribed  pattern  arbitrarily  closely in the  mean-square  sense. 

It is consequently  possible,  for  every  aperture  however  small,  to find an  aperture 

function f E L2  which delivers a radiation  pattern  with  arbitrarily high directivity. 

Any attempt  to  obtain  'supergain' from practical  antennas  will,  however,  result  in 

an unrealizable  aperture  function  with  high  amplitude  and  rapidly  varying  phase. 

As a measure of the  'realizability' of the  aperture  function,  Taylor (1955) 

introduced  the  supergain  ratio, ..1 which  in  our  notation is defined as 

(2.4) 
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Other  'quality  factors'  have  been  introduced by Chu (1948) and  Collin  and  Rothschild 

(1963,  1964) . We will discuss  these  different  factors  in  some  detail  in  Section  2. 3. 

In order to achieve the  pattern  synthesis we write the  aperture  function f(q) as 

where cfn (is given as a set of functions  defined  on  the  interval (-1, 1). We denote 

the  pattern  functions  corresponding  to f (q) as gn(E) . There is a large  degree of n 
freedom  in  the  choice of f the only necessary  property is that this set he  comp- 

lete  in  the  subspace of L2 where  the  solution of our  problem is to  be found. We will 

consider two examples of functions  which  have  been  used  in  different  synthesis  pro- 

cedures. 

{ n! 

Example 1: 

fn(rl)= e i%T, lV l6 1 

(2. 6) 

If we choose  the  parameters u = n r  and  allow  n  to  take  negative as well as positive 

values  the  expression  (2.5) is an  ordinary  Fourier  series. In this  case  the  radiation 

pattern  in  certain  directions is related  to  the  coefficients a by the  expression 

n 

n 

and an approximating  pattern  which  coincides  with  the  prescribed  pattern at these 

points is readily  obtained. 
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Example 2: 

11 
is a radial and S an angular prolate  spheroidal  function  in  the  notations of 

Flammer (1957). The  interesting  properties of these  functions are that  they are the 

eigenfunctions of Eq. (2. 3) and that  they  bear a close  relationship  to  the  supergain 

ratio. They have  been  studied by Slepian  and  Pollak (1961)  and Landau and Pollak 

(1961. 1962) and from  their  work we take  the  following results. 

On 

i. Sol)is  orthogonal and complete  in  the  interval (-1, 1). It is also orthogonal 

i n  the  interval (-a, 00) (but  not, as Rhodes (1963) claims,  complete  there). 

ii. The  smallest  possible  value of the  supergain  ratio y is 

kL 
00 2 ’  and is obtained for the  aperture  function f(q) = S (- q) 

. .. 
111. Consider  the  class of aperture  functions  which  corresponds  to a given 

value of the supergain  ratio y (notation: f E E(y )) and  which are normalized  such 

that 
0 0 

I f (  r ) )  I dq = 1 . 2 

If we want to  approximate  such a function  with a finite number of given  functions 
N- 1 

0 
are the  best  possible  choice  in  the following sense:  They 
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are the  functions  which  achieve 

min  max  min 

f6E(yo) 0 j-1 

Observe  that iii ensures  the  best  mean-square  approximation of the  aperture fun- 

ction,  which  does  not  necessarily  imply  the  best fit of the  pattern function.  The set  

of pattern  functions  {gn} is here  orthogonal and is consequently  suited  for a mean- 

square  approximation of the  prescribed  pattern. 

2 .  2 Aperture on an  Infinite  Circular  Cylinder 

Consider  an  infinite  conducting  circular  cylinder of radius  a with a finite  aper- 

ture S. We introduce a cylindrical  coordinate  system ( p ,  @, z)  such  that  the  genera- 

ting  surface is given by p = a,and  also  polar  coordinates (r, 8, @ ( p = r  sin 8, z = r  cos e). 
In analogy  with  the  plane case  the far field can be  expressed  as 

exp [-i(n@'+kz cos Qd dg'  dz (2. 10) 

exp [-i(npl'+kz cos 0jl dv'dz , (2. 11) 

where H(l) and are the Hankel function of the first kind  and its derivative  with n  n 

11 
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I 

respect  to  the  argument  (Silver  and  Saunders, 1950). 

Just  as in  the  plane  case  the  infinite axial slot  and  the  narrow  circumferential 

slot  can  be  treated as one-dimensional  problems. We write  the  relation  between  the 

radiation  field and the  aperture  field as 

The  physical  significance of P 

respond to Fig. 2-2. 

and A is 

(2.12) 

given in Table 11-2 where  the  notations 

r 

cor- 

FIG. 2-2: INFINITE AXIAL AND NARROW CIRCUMFERENTIAL  SLOT 
ON INFINITE  CYUNDER 

It  turns out  that  the  fundamental  properties of the  plane  synthesis  problem as 

expressed by a) and b)  on  page 6 are still valid in  the  cylindrical case. Thus; 

a)  For an  arbitrary function F(g)€ Ll, there is in general no aperture  function 

A($ I) € L a  such that the  corresponding  pattern function P($)=F( SI). 2 

b) We can  obtain,  however,  for  every  positive  quantity E, an A(Vr) €La  whose 
2 

corresponding P(@ satisfies 
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NARROW"CIRCUMFERENTIAL 
SLOT 

ikr 

INFINITE AXIAL SLOT 

TM FIELD 

i(kr+ 
7.l 

( 6  =width of slot) 
00 E cosng 

27r n=O i?I(')ika) 
K(@= 1 * 

n 

J 

TABLE 11-2: RELATION OF PHYSICAL FIELD QUANTITIES TO THE APERTURE AND PATTERN 
FUNCTIONS OF EQ (2.12) 



A proof of these  statements is given  in  the  appendix. To obtain a meaningful  syn- 

thesis  problem, we must  apparently, as in the  plane case, put some  constraint on 

the  permissible  aperture  functions.  The  question of the  most  significant o r  appro- 

priate  constraint is discussed in the  next  section. 

2 . 3  The  Quality  Factor 

Integration of the  complex  Poynting  vector  over  the  aperture S in  the 

infinite  plane o r  on  the  cylinder  yields 

( 2 .  13) 

where 2 is a unit vector  normal  to  the  aperture (2 o r  p* respectively) P i s  

the  radiated  power and W -W is the  difference  between  the  time-averages of 

the  electric and  magnetic  energy  densities - ( c  E. E:: - 1-1 H -  H:::) integrated  over 

the half space  or  the  region  outside  the  cylinder  respectively. If we try  to  calcu- 

late the  stored electric and  magnetic  energies  separately as the  integrals of 
1 1 - E.  E::: and - 1-1 H -  H::: respectively,the  results  will  be  infinite  because 
4 0" 4 0" 

of the slow decrease of the f a r  fields. To overcome this, Collin  and  Rothschild 

(1963, 1964) defined  the electric and  magnetic  energy  densities as 

r 

e m  
1 
4 0"  0" 

14 

(2.14) 



Here U and U are  quantities  equal  to  the  energy  densities in the far field when 

the  distance  from  the  source  tends  to  infinity. In the  cylindrical  case we take 
e  m 

(2.15) 

The  quanities  given by Eq.  (2.14)  are  finite if integrated  over all space and can 

be considered  as  the  remaining  energies when a  part  corresponding  to  the  power 

flow in the  radial  directions is subtracted. 

A quantity  which i n  the  cylindrical  case  corresponds  to  the  supergain  ratio 

is  apparently 

(2.16) 

It is often  assumed  that  the  supergain  ratio is a  measure of the  reactive  power, 

2 w (  W - W ), o r  the  stored  energy.  This opinion  has  been  critized by Collin and 

Rothschild (1963). The result of their  investigation  for  the  plane  case is that  a 

!arge  value of the  supergain  ratio  indicates  a high amount of reactive  power and 

Zonsequently also a high  amount of the  stored  energy, but  the  converse is 

not  always  true.  Consider for example  the TM - field  in  the  infinite  aperture 

(cf. Table II - 1 1. The  aperture  field  which  pertains to the  smallest pos- 

sible  value of the  supergain  ratio  (Eq.  2.8 ) has a value  different  from  zero 

at the end points of the  aperture.  This  clearly  violates  the  edge  condition 

(cf.  Meixner,  1949) and implies an energy  density  around  the  edges  which 

tends  to  infinity  in  such a manner  that it is not  integrable. In spite of 

the  fact  that  the  supergain  ratio takes its lowest  possible  value in this 
case both  the  reactive  power  and  the stored energy are infinite.  Observe  that  in  the 

corresponding  TE-case  there is no  violation of the  edge  condition. For a narrow 

m e  
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slot  the  stored  energy  in  the  vicinity of the  aperture  tends  to  infinity as the width 

of the  slot  tends  to  zero. In the  limit (i. e. a line  source)  the  reactive  power and 

stored  energy  are  infinite  for  every  aperture  function.  quite  independently of the 

value of the  supergain  ratio. 

Collin and Rothschild (1963  and  1964) have  proposed a quality  factor  for 

radiation  problems  defined  as 

(2.17) 

where W is the  larger of the  time-averaged  magnetic  or  electric  energies  stored  in 

the  "evanescent"  field, as defined by (Eq.  2.14). P is the  radiated  power.  The 

definition  (2.17) is in  accordance  with  the  usual  definition of quality  factor  for a 

network o r  microwave  cavity and can  be  considered as characteristic of a radiating 

system which is tuned  for  resonance by the  addition of a lossless  reactive  element. 

r 

If we express  the  fields as sums of cylindrical  modes 

pattern function  in a Fourier  series 

and thus  expand  the 

(2.18) 

there is no interaction  energy  between  different  modes  and we can  calculate  the 

energy  for  each mode separately.  The  total  quality  factor is then  obtained as 

Q =  (2.19) 

For  the  infinite  axial  slot  the  factors  Q  can  be  expressed  explicitly.  They are n 
equal  for  the TM- and TE-  cases and are calculated by Collin and Rothschild (1964) 

as 
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Q n 4  =z { % + [n 2 +1-(ka)2] (J2+Y n n  2 ) - [(n+ l)J n  -ka Jn+3  2 - [(n+l)Yn-ka 

(2.20) 

The  argument of the  cylinder  functions is everywhere ka. 

The  narrow  circumferential  slot  delivers  an  expression  for Q which  depends n 
on  the  distribution of the electrical field  strength  across  the  slot.  It  can  be  ex- 

pressed as an  infinite  integral  containing a combination of cylinder  functions  simi- 

lar to Eq. (2.20). 

Chu (1948)  obtained  a  quality  factor  for  the  spherical  case by using  the r e -  

currence  relation  for  the  spherical  Bessel  functions  to define  an  equivalent  RLC  net- 

work  for  each  mode.  The  quality  factor was then  defined as the  ordinary Q related 

to this  circuit.  This  procedure  has  been  shown by Collin  and  Rothschild  (1963)  to be 

equivalent  to  the  definition  in Eq. (2.17). The  method  leads to tedious  calculations 

for  higher  modes  and Chu therefore  introduced a simplified  equivalent  circuit  and a 

slightly  different  quality  factor which is not restricted  to  spherical  modes and  can 

be expressed  as 

w-w(We-W a 1 + I w(w,-wm)l 
&' = a0 m 

P (2.21) 
r 

where  the  quantities  involved a r e  defined by Eq.  (2.13).  The  derivative  with re- 

spect  to w shall be  taken  with  the  tangential  component of the electric  field 

strength  over the aperture  kept  constant. If the  aperture is small  compared  to the 

wavelength this is equivalent  to  keeping  the  feeding  voltage  constant  and w e  can 

write 

(2.22) 
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and 

(2.23) 

If B # 0, we can  tune  the  system  for  resonance by  adding  (connecting  in parallel) a 

positive  susceptance wC o r  a negative one -l/wL. If we denote  the  resulting  suscep- 

tance  after tuning as B we see  that w - = w- + 1BI. Thus Q' can be  consi- 

dered as a measure of the  frequency  sensitivity of the  input  susceptance if we tune 

the  system to resonance. In the  plane case Q' = Q (Collin  and  Rothschild, 1963) but 

for  cylindrical  modes  they  are  slightly  different. A straightforward  calculation 

yields,  for  example, Q' for a single  cylindrical TM-mode as 

aB0 aB 
0' aw aw 

c1 i 

Q' = Q  f -  
L 1 

n n 7 r 2  2 
n n 

- k a .  
J (ka) + Y (ka) 

(2.24) 

The  quantities  used in the  definition of Q' in  Eq.  (2.21)  can all be  obtained as sur- 

face  integrals  over  the  aperture.  It is therefore  possible  to  use  this  definition  for a 

quite  arbitrary  conductive body with  an aperture on its surface. In a general case, 

however,  this Q'  will  have no connection  with  the  energy  stored  in  the  vincinity of 

the body and  it is, for  example,  possible for  Q' to take  negative  values. 

We can  define  the  "supergain  ratio"  for a single  cylindrical TM-mode as 

r = ?r [J2(ka)+ Y2(kad n = 0, 1 , 2 , .  . . (2.25) 
n 2 n  n 

The  factor  defined by Eq.  (2.16) is then  obtained as 

(2.26) 
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The definition of r in Eq. (2.25) is such  that r + Q as ka-0. Q , Q f  and 

r have  been  calculated  from Eqs. (2.20),  (2.24)  and  (2.25)  for n 6 10  and ka < 15 

and a re  shown in Fig. 2-3 for  some  values of n. 

n 1 1 n n  

n 

The question of  how high  values of the  quality  factors are admissible in prac- 

tical  design of slot  antennas is outside  the  scope of this  report. However, i t   seems 

clear  that  there  can be no close  connection  such  that two different  aperture  distribu- 

tions with equal  quality  factor  are  always  equally  easy (or difficult) to realize  practi- 

cally. All the  quality  factors  considered  here  have  the  property that a high value 

implies  impractical  design. It is seen  from  Fig. 2-3 that Q is the  most  restrictive 

one  and if we prescribe Q during  the  synthesis  procedure  the  corresponding  values 

of Q' and f will also  be  under  control. 

2.4  Comparison Between the  Plane  and  Cylindrical  Cases 

As we have seen  in  Sections 2.1 and 2.2, the  plane  and  cylindrical  synthesis 

problems  have  the  following  main features in  common: a) there   is  no  "exact  solution" 

and b) there is a  theoretical  possibility of obtaining  supergain.  Thus  the  approach 

for  the  cylindrical  problem  should  be  in  general  the  same as  in the  plane case and in 

conformity  with Eq. (2.5) we write  the  aperture  distribution as 

(2.27) 

where {@d is a given set of linearly independent  functions, square  integrable  over 

the  interval -CY< fl <CY (notation: @ E L ). We denote  the  pattern  function  that  via 

Eq. (2.12) corresponds  to G (9) as nm($). A s  in  the  plane  case, we have  consider- 

able  freedom  in  the  choice of 1// as long as the se t  is complete  in  the  subset of 

LLY where  the  solution of our  synthesis  problem is to  be  found, 

CY 

m 2  

m{ 2 
2 

The  simplest  type of meaningful restriction on the  aperture function is to 

use a finite  set of functions {Gmr in  the  expression  (2.27). We can  then  calculate 

the N +  1 coefficients $ , GI, . . .GN either  in  such a way  that  the  corresponding  pat- 
0 
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tern function is equal  to  the  prescribed  pattern  for N+ 1 given values of $ in  the 

interval -7r 5 fi < 7r , or  so the  approximating  pattern is the  best  mean-square 

approximation of the  prescribed  pattern.  The unknown coefficients are obtained  in 

either case as the  solution of a system of N+ 1 linear  equations. In contrast  to  the 

plane  case,  there is no set  of simple  functions  such as those of Eq.  (2.6) which yield 

a direct  relationship  between  the  coefficients  and  the  radiation  pattern in certain 

directions.  The  mean-square  approximation, on the  other  hand, would be  simplified 

if one  could  find a set { ~ such  that  the  corresponding  pattern  functions 

were  orthogonal, but there  seem  to  be no well-known functions  with th is  property 

either. A linearly independent set  could  be  orthogonalized by the  usual  Schmidt 

process, but  this is of course equivalent  to  solving  the  original  system of linear 

equations. 

v!J: 

A more  satisfactory  constraint on the  aperture function  than merely  limiting 

the  number of te rms  in  the  expansion  (2.27) is to  keep  some  quality  factor  constant 

during  the  synthesis  procedure. If we use  the  mean-square a;.lproximation. s u c h  a 

scheme  can  be  treated  analytically by introducing a Lagrange  multiplier. A process 

which for  the  plane  case  delivers  the  best  mean-square  approximation to a pre- 

scribed  pattern  for a given  value of the  supergain  ratio  has been  proposed by Rhodes 

(1963).  The  functions  used by Rhodes  for  expansion of the  aperture  function  are  the 

spheroidal  functions of Eq. (2.7).  Due to  the  orthogonality of the  corresponding  set 

of pattern  functions  and  the  special  choice of constraint,  the  ogtimum  pattern  and 

aperture  functions can be  determined  directly without  solving any set  of linear equa- 

tions, i .  e. the  matrix of the  system  degenerates  to a diagonal  form.  Rhodes  uses 

a finite number of t e rms  in the  expansions (2.5) and  thus  the  spheroidal  functions 

are  also  the  best  set  to  use in approximating  the  aperture  function  in  the  sense of iii 

on  p. 10. This, of course,  does not mean  that  they are the  best  choice  for a speci- 

fic  prescribed  pattern, but only  that  they are the  best for the  worst  possible  pattern 
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with  the  prescribed  value of the  supergain  ratio. It  may  also  be  remarked  that  for 

the  cases of a TM-field  in  an  infinite  aperture  and a line source,  the  pattern functioq: 

of Eq.  (2.3)  differs  from  the  radiated  field  in  the far zone by a cosine  factor  (cf. 

Table 11-11. This  means  that  in  the  procedure of Rhodes,  deviation  from  the  pre- i 

scribed  radiated  field  will  be  somewhat  overemphasized  in  directions  away  from  the 

normal  to the aperture,  to  the  detriment of the  fit  in  directions  close  to  the  normal. 

If we should  define  instead a pattern  function h(E) directly  proportional  to  the  radi- 

ated far field  in  these  cases,  the  integral  relation  corresponding  to  Eq.  (2.3) would 

be 

I 

t 

(2.28) 

The  eigenfunctions of this  equation  are, as pointed  out by Fel'd  and  Bakhrakh  (1963), 

odd periodic  Mathieu  functions of argument arc cos E .  

It  may seem  desirable  to  find a set  of functions  in  the  cylindrical  case  which 

have properties  similar  to i, ii and iii on  p. 10 . If we write  the  integral  relation 

in Ey. (2 .12)  so that  the aperture function  and  the  pattern  function are defined  in  the 

same  interval we get 

C" 
\ 
3- 7r 

One important  difference  between  this  and  the  corresponding  formula  for  the  plane 

case,  Eq.  (2.3), is that  the  kernel is no  longer  symmetric.  The  eigenfunctions of 

Eq.  (2.29) (if there   are  any)  will  consequently  certainly not be  orthogonal.  The 

property  that  the  spheroidal  function S minimizes  the  supergain  ratio is also a 00 
direct  consequence of the  symmetry of the  kernel in the  plane case. The  aperture 

function in the  cylindrical  case  for  which  the  corresponding  quantity r defined by 

Eq.  (2.16)  takes  its  lowest  possible  value is the  eigenfunction  which  corresponds  to 

the  lowest  eigenvalue of the  kernel 
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This  kernel is symmetric  and  consequently  has  orthogonal  eigenfunctions.  However, 

if  we use them  to  express  the  aperture function,  the  corresponding set of pattern 

functions  will not be  orthogonal  and not much is gained in the  synthesizing of an  arbi- 

trary  prescribed  pattern. 

The  simplifications  in  the  mean-square  optimization  procedure  that  can  be 

achieved by a more  sophisticated  choice of { @ m] and {mm} must be  weighed 

against  the  fact  that we must  deal  numerically  with  more  complicated  functions. In 

the  plane case  these  "best"  functions  turned out to be  functions  which  were  already 

tabulated  and  had  suitable  expansions  available.  However,  even in this  case  it is not 

obvious  that  the  expansion of the  aperture  function  in a Fourier   ser ies ,  for example, 

instead of a series of spheroidal  functions, would involve a significantly  greater 

total  amount of numerical  calculations. In the  cylindrical  case  where,  due  to  the 
" 

non-symmetry of the  kernel,  there  appears  to  be no orthogonal  set pm) with 
r 7  inm) also  orthogonal,  it  seems  reasonable  in  the  first  instance  to  choose  a  set of 

aperture  functions  such  that  the  corresponding  set of pattern  functions is easy to 

calculate. Only if it  then  turns out that  this  special  choice  delivers a numerically 

intractable  optimization  process,  should  there  be  any  reason  to look for a "better" 

set  of functions. Such an approach  gives  no  precedence  to  the  "supergain  ratio" 

over  other  possible  quality  factors in the  formulation of the  constraint  on  the aper- 

ture  functions,  and as indicated  in  Section 2.3,  it may  be  appropriate to use a more 

restrictive  quality  factor. 

Generally,  only  the  amplitude of the  prescribed  pattern (i. e.   the power pat- 

tern) is of interest  in  the synthesis process. If the  phase of the  prescribed  pattern 

has  any  influence on the result of the  synthesis, we have a possibility of improving 

the  approximation  by  choice of a suitable  phase  function. A simple  application of 

such a scheme  for a plane aperture is given by Caprioli et a1 (1961). 
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There is one more  (perhaps  more  basic)  difference  between  the  synthesis 

problems in the  plane  and  cylindrical cases. Within the  authors' knowledge, all 

proposed  synthesis  procedures  in  the plane case deliver areal approximating  pattern 

if  the  prescribed  pattern  itself is a real function. In the  cylindrical case, however, 

the  approximating  pattern  related  to a real  prescribed  pattern  will,  in  general,  be a 

complex-valued  function. A s  we shall   see in  Section 2.6 this  means  that  the  best 

mean-square  approximation  to a real  pattern  can be a very  poor  approximation  to 

the  power  pattern. 

2 . 5  Formulation of the  Synthesis  Problem 

The  aim of our pattern  synthesis is to  achieve  such  an  aperture  function  that 

the  corresponding  power  pattern is the  best  possible  approximation in some  sense  to 

a prescribed  pattern.  The  realizability of the  aperture  function  should  be  controlled 

during  the  process by limiting  some  factor  connected  with  the  energy  stored  in  the 

near  field  around  the  aperture.  This  type of constraint is relatively  tractable if we 

use a mean-square  approximation,  and a suitable  definition of the  optimum  achiev- 

able  pattern  corresponding  to a prescribed  pattern P (6) would be  the  function P(@) 

which pertains  to  the  quantity 
g 

under  an  appropriate  subsidiary  condition. If the aperture function A(@) is ex- 

pressed as a linear  combination of given  functions as in  Eq.  (2.27) we can  consider 

A as a function of the  appropriate  coefficients y , y Use of calculus to deter- 

mine  the  minimum  results  in  an  infinite  nonlinear  system of equations  for 
0 1 ' " .  * 

and  since  this is extremely  intractable we will  modify  the  formulation  somewhat. It 

is easy  to  see  that A is also obtained as 
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where  the  minimum of the  right hand side  shall  be  taken  simultaneously  with  respect 

to  the  set of numbers bV} and  the  function e(@). A  necessary condition for  this 

minimum is of course  that we have a minimum of y alone if we keep e($) con- 

stant  and  vice  versa. At least one such y and e($) together with the  corre- 

sponding  value of the  integral  in Eq. (2.32)  can  be  constructed in the  following  way. 

c V I  c V I  

Define 

where P ($) is a given  function.  The  minimization is here  an  ordinary  mean- 

square  approximation of P (fJ) with respect to‘the  given  function 
0 

S 

Thus the integral on the  right hand side  can be expressed  as a positive  definite 

quadratic  form  in y which  has a single  minimum  obtained by solving  a  system of 

linear  equations  in y , y For a specified P (6) the  numbers A,,A2, . . . form 

a  positive,  monotonic,  decreasing,  and  accordingly  convergent  sequence.  The 

monotonicity is shown by the following  reasoning: if we substitute 

{ V I  
0 1 ” ’  * 0 

in Eq. (2.331, the  value of the  integral  will  clearly  diminish.  The  succeeding  min- 

imization  with  respect  to P (6) to  obtainAs+l  can  then only result in a still 

smaller value. Now “-)a3 is apparently  the  desired  stationary  value, but as 
s+l  lim 
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usual when we use necessary but  not sufficient  conditions  for  an  extremum we have 

to  check  separately  whether we have  obtained  the  absolute  minimum.  There  may 

exist  several  limit  points of A depending  on the  choice of P (g), and there  

seems  to be no simple  rule which tells how to  choose P (g) so that  the  absolute 

minimum  corresponding  to  Eqs.  (2.31)  and  (2.32) is obtained as the  limit. 

c s 3  0 

0 

I 

For  a prescribed real valued  pattern  function P ( g ) E  L  and a given  initial 7T I 

function Pa(@)€ L,  we now calculate  the  set of functions P (g) consisting of those 7r 3 U L. 

functions t L T  which 2 

71 

n = l [  s 27r 

J-7r 

ninimize  the  corresponding  quantities 

where W is the  larger of the  time-averaged  magnetic or electric  energies  stored 

in the  evanescent  field as defined by Eq.( 2.141, connected  with P (6). The  quantity 

,u is a given  parameter  which  can  be  interpreted as the "weight" assigned  to  the 

stored  energy  compared  to  the  deviation  from  the  prescribed  pattern.  Since p can 

also be  considered as a Lagrange  multiplier  the  functions P (@, P (g), . . . are also 

the  ones which pertain to A in  Eq. (2.33)  under  the  constraint 2wW ,<G, where 

G is a constant. If A is reasonably  small  the  radiated  power of the  approximating 

pattern is close  to  that of the  given  pattern. In that case the  above  constraint is 

nearly  equivalent  to  keeping Q as defined by Eq.  (2.17)  constant. It may  seem 

more  natural  to  prescribe a value of the  stored  energy o r  the  quality  factor  than of 

p during  the  optimization  procedure.  The  reason  for not doing so is that  the  prob- 

lem  then would contain  an unknown Lagrange  multiplier  which  would  have  to  be de- 

termined by a "cut  and try"  procedure, i. e .  we  would have  to  guess a value of the 

multiplier  and  then  solve  the  problem  and  check  whether  the  solution  satisfied  the 

subsidiary  condition.  Even if we used  the  information  from earlier trials to  improve 

the  subsequent  guesses as much as possible  the  procedure would  involve  the  solution 

S 

S 

1 2 

S S 

S 
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of several  times as many  minimum  problems as in our formulation. For a fixed 

prescribed  pattern  the  parameter I-( is a monotonic decreasing  function of the  stored 

energy  and it may  be  assumed  that it is as good (or bad) as this  quantity as a mea- 

sure of the  realizability of an  aperture function. 

We will  henceforth  consider  only a TM-field  in  an  infinite  axial  slot.  The 

aperture  and  pattern  functions we obtain are thus  valid  also  for  the  narrow  circum- 

ferential  slot.  The  corresponding  procedure  for a TE-field  in  an  infinite  slot is 

completely  analogous. 

It  follows from  Eq. (2.34) that  the  approximating  pattern is an even o r  odd 

function of fl i f  the  prescribed  pattern  has  the  same  property,  that  is, if P is 

even, all P (6) will  be so and  vice  versa. As the  kernel K($) in Eq. (2 .12)  is an 

even  function, this  means  that  the  corresponding  aperture  function is also  either 

even or odd, in  accordance  with  parity of P (6). Thus, if  we divide  a  general  pre- 

scribed  pattern  function  into an even  and  an odd part  the  solution of the  synthesis 

problem is the sum of the  solutions  for  the  even  and odd parts  separately. It is nu- 

merically  advantageous  to  make  this  separation,  and we  express  the  aperture  func- 

tion as 

0 

S 

S 

N 

where  the  superscript N indicates  the  number of t e rms  used  in  the  expansion. In 

general,  we  will  give  the  expressions  for  the  even  and odd case  in  the  same  formula, 

with the  upper  alternative  pertaining  to  the  even  and  the  lower  to  the odd functions. 

The  factor da makes  the  aperture  function fulf i l l  the  edge  condition  and  thus 

ensures a finite  amount of stored  energy. 

The kernel K(P) in Eq. (2.12) is given as a trigonometric series with  period 

-r < b < r and  we Want to  express A (6) in the same way, 
N 
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AN($) = 

N 
n We write  the  coefficients a as 

N cos 
n sin nfl J -7T q < 7 T .  (2.36) 

n=O 

N - 
a N =  n >,y d 

m =O 
m nm 

where  according  to Eq. (2.35), 

(2.37) 

J-Q (2.38) 

E =1,  E = E  =. . . = 2  . 
0 1 2  

N 
Since  a  Fourier  series  always  can  be  integrated  term by t e rm we substitute A ($) 

from Eq. (2.36)  into Eq. (2.12) and  obtain  the following series for  the  correspond- 

ing pattern function 

where 
N 

For a  TM-field in an infinite axial slot  the  stored  magnetic  energy  for  each 

mode is always  greater  than  the  electric  energy,  and  using Eqs. (2.17)  and  (2.19) 

we get 
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where Qn is given by Eq. (2 .20) .  

Employing Parseval's  relation we can now write Eq. (2 .34)  as 

where 

(2.42) 

(2 .43 )  

is the  nth  Fourier  coefficient of the  prescribed  pattern  after s-1 steps of the  iter- 

ative  scheme. In the  numerical  computations a good approximation of p' can be 

obtained without integration by constructing a finite  trigonometric sum 
n 

whose  value  coincides 

at a sufficient  number 

If we  use  Eqs. 
" 

with  that of 

of equidistant  values of 6. 
(2.37) to express  the  coefficients  p in Eq. (2 .40)  in te rms  N 

n 
hT 

of cym) we see that n" is a (positive  definite)  quadratic  form in these  quantities 

and we obtain  the  minimum of A by putting 
S N 

S 
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This  leads  to a system of linear  equations  for  the N +  1 (even case) or N (odd case) 

unhowns y m’ 
N 

m=O 
= 0,1,2,  ... N (2.44) 

where 

a3 

A = A  - 
Pm  mP 16 n 2  mn-llcy 

n=O JJka) + Y2(ka) n 

The  advantage of separating  the  prescribed  pattern  in  an  even  and  an odd part is 

that we have only to  solve two independent systems of equations  in N and N +  1 un- 

knowns instead of one  system  with  2N+ 1 unlmowns. As the  set of functions we used 

in the  expansion of A (8) in Eq. (2.35)  apparently is complete  in  the  subset of L N CY 

2 
which consists of aperture  functions with a finite  amount of stored  energy, we ob- 

tain  the  aperture  function  related  to  the  stationary  value of the  integral  in Eq. (2.32) 

as 

(2.47) 
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Thus  the  computational  scheme is to  iterate  the  phase of the  prescribed  pattern un- 

til  there is no further  improvement,  for a fixed  value of N so large that  the  result- 

ing A($) is s a i c i e n t l y  close to  the  limit. 

It may  be  noted  that  the  system of equations  (2.44) is intrinsically ill suited 

for  numerical  solution if N is large. If we compute  the  elements  A of the coef- 

ficient  matrix  to a fixed  number of significant  figures we can  replace  the  infinite 

sum  in  Eq.  (2.45)  by a summation up to n = M if M is large enough. But for 

n > M the  column  vectors of A are no longer  linearly independent  and  the solu- 

tions of the  system  (2.44)  do not minimize A . Thus  the  numerical  stability of the 

problem is dependent  on how rapidly  the  series  in Eq. (2.45)  converges. A simple 

calculation  shows  that  due  to  the  factor pQ the  terms behave as l / n  when n is 

large  and  consequently, as could  be  expected,  the  stability  increases  with  increasing 

value of p. 

Pm 

c 12 N 
S 

2 
n 

When is calculated  (after a sufficient  number of iterations of the 

phase of the  prescribed  pattern)  the  aperture  function is obtained from  Eq. ( 2 . 3 5 )  

and  the  corresponding  pattern  function  from Eqs.  (2.37) - (2.4).  We introduce  the 

real  quantities 

N 
N 1 x = -  

2 2.47 
77 P=O 

(2.48) 
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Also we normalize  the  prescribed  pattern as 

and  obtain 

n , = 1 - ?  
N 
m In 

The quality  factor is then  expressible as 

N 2 w G  X - Y  N N  

N 
P Y  

Q E-- - 
PN r 

and the  "supergain  ratio" as 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 
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2.6  Numerical  Results 

The  accompanying  Figs. 2-4 through 2-8 have  been  taken  from a large body 

of numerical  data  computed  for  the  case of a  single  axial  slot in an infinite 

cylinder  under  the  sole  constraint  that  the  number of harmonics  in  the  aperture  field 

shall be  fixed.  The  forms  actually  used  in  these  computations  were  somewhat dif- 

ferent  from  those  described  in  the  preceding  sections, and a  brief  listing is perhaps 

desirable  here. 

The  aperture  function is first expanded  in  the two sets  of exponentials  corres- 

ponding  to  the two angular  intervals (-0, a) and -n, n ) ,  with the  expansion  pertain- 

ing  to  the  former  limited  to  a  fixed  number of terms,  thus, 

This yields  at  once  the  relation 

If the  corresponding  pattern  function is 

the  fundamental  integral  relation (2.12) provides  that 

(2.56) 

(2.57) 

and the  application of the  minimizing  conditions  results  in  the  linear  system of 

equations  in  the unknowns 
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where 
A -2 sin(mn -rcr)sin(nn -ra) 

(1) (2) 
r r 

mn r=-o3 H (ka)H  (ka)(mn-rcu)(nn-rcu) 

(2.59) 

= 2 (2) 
i sin  (nn-ru) Pr r g 

r 
n r=-o3 H (ka)  ( n n - r d  

P (9) being  the  prescribed  pattern function. Lf the  inverse of the  matrix 
g 

denoted by /A-' 1 , then  the  actual  pattern  function P (g) can be written 
mn N 

where 

and the  mean-square  error  between  the  actual and prescribed  patterns is finally 

The  infinite s u m  in  the above forms were of course  truncated at some point  where 
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the  accuracy  was found to be  sufficient.  The  iteration  procedure  in this formulation 

was  essentially  the  same as that  described  in  Section  2.5. 

The  various  parameters  involved are defined as follows: 

ka = 271 (cylinder  radius/wavelength) 

CY = 1/2 angular  width of slot 

p = 1/2  angular  width of sectoral  prescribed  pattern 

N = highest  order  harmonic  in  aperture function. 

The  range of values of ka used  in  the  computations  was 12 - 21. In general  the  depen- 

dence of the  phenomena of interest   here on this  parameter is not striking, and con- 

sequently only two values are treated  in  the results presented.  Values of a ranged 

from  .25 up to 2. 6 radians,  and  those of f i  from . 5  up to 7r radians.  The  maximum 

order  N ranged  from 1 to 5. The  iteration  procedure  in  general  was  continued  until 

two successive  values of E were  obtained  which  differed by less than 10 percent. 

In most  cases this required only from two to  four  iterations. 
N 

Figure 2-4  shows  values of E plotted  against a for a given  value of ka  and 
N 

various  values of N .  The  final  iterated  values  shown  for N = 3, 5 a r e  not necessarily 

the  minimum  values  oktainable by this process, but are  very  near  these  values, and 

the  linearity of the  behavior  for N = 3 is perhaps  noteworthy. 

Figure 2-5  shows  the  effect of the  iteration  procedure  for a relatively  narro? 

slot and a uniform (omnidirectional)  prescribed  pattern.  The  values of E obtained 

here  ranged  from  .880 down to  .325.  The  aperture  field  for  the  final  iteration  in 

the  same  case is shown in  Fig. 2-6. It was found in  general, as expected,  that  the 

combination of narrow  slot  and  omnidirectional  prescribed  pattern  resulted  in  the 

most widely  fluctuating aperture  fields. 

N 

Figure 2-7 shows  the  final  iterated  pattern  functions  for a prescribed  pattern 

of approximately sectoral form, i. e. essentially a step function, of width 3 radians, 

with slot width  2 radians and various  values of N. The corresponding aperture fields 

a r e  shown in Fig. 2-8. 
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In Table 11-3 are  l isted the  values of E at  each  iteration for the  majority 
N 

N of the cases which  have  been  computed  with A (@)given by Eq. (2.56)  under  the  sole 

constraint  that N shall be fixed. 

TABLE 11-3:  VALUES OF eN 

ka CY P ,  
15  .25 7r 

1 . 0   . 5  
1 .0  

2.0 

77 

1 . 4  7r 

1. 7 
2 .0   1 .0  

7r 

2.3 7r 

2.6 

2 1  . 2 5   . 5  

1.5 

77 

1.0  1.5 

2.0  1.0 

7r 

N 
3 
5 
1 
3 
5 
1 
3 
5 
1 
3 
5 
3 

3 
5 
3 
5 
3 

1 
3 
1 
3 
1 
3 
1 
3 
5 
3 
5 
3 
5 

s = o  
.850 
.0059 
.027 
.021 
.0175 
.300 
.297 
.290 
.670 
.668 
.662 
.542 
.447 
.012 
.0066 
.352 
. 351 
-257 
.161 

.053 

.035 

.384 
,356 
.910 
.880 
.146 
.144 
. 138 
.013 
.0078 
.355 
.355 
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s = l  
.417' 
.0047 
.024 
.012 
.0085 
.171 
. l o o  
.070 
. 5 0 7 .  
.412 
.312 
.327 
-262 
.012 
.0066 
.195 
-151 
.132 
.076 

.016 
,022 
. 130 
.084 
.620 
.465 
.076 
.047 
.055 
.013 
.0078 
.220 
.183 

s = 2  
.289 
.0044 

. 010 

.0068 

.168 

.079 

.037 

.503 

.378 

.228 

.295 

.242 

.186 

.119 
-130 
.075 

-014 
.017 
.072 
.044 
-555 
.344 
-076 
.031 
.029 

-216 
.160 

s = 3  s = 4  
.266 

. 010 

.0063 

-073  
.030  .027 

.217 

.lll 

.014 

.014  .013 

.063  .061 

.034  .029 

.547 

.325 

.029 

.022 .019 

,151 
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The  pattern  functions  and  the  corresponding  aperture  fields  given  in  Figs. 

2 -9 through 2-16 are computed  according  to  the  formulation of the  synthesis  problem, 

in Section 2.5. 

The  value of ka  used  in  the  computation was 15 and CY (1/2 angular width of 

slot)  was 1 or  2 radians.  The  reason  for  the  choice of those  relatively  large  values 

of CY is that the series  in Eq. (2.45), as mentioned  before,  only  converges as l / n  

and  a'simple  method  for  calculating the limit is easiest  to  obtain  for  large  values of 

CY. The  maximum  number of terms (N) in  the  expansion of A(@) in  Eq. (2.35) was 10, 

which in  most  cases  gave a satisfactory  approximation  to  the  limit N 4  a,. The 

number of terms in the ser ies  of Eqs. (2.39) and (2.46) w a s  restricted  to 39, which 

due to  the factors H (ka)  and H (ka),  respectively,  in the denominator of the  in- 

dividual terms  was  quite  sufficient. In accordance  with  this, the prescribed  sector- 

ial pattern with 1/2 angular  width p=2 radians was defined as given by  the f i rs t  39 

terms in the Fourier  expansion,  normalized  in  such a way that the  mean  square  value 

was  equal to one.  The  iteration  procedure was  continued  until  the last value of 

AN differed by less  than 1 percent  from the preceeding one. This  required  from 

three to  twelve iterations. 

2 

(1)  (2) 
n  n 

m in 

The  different  values of the  Lagrange  multiplier, p used  in  the  calculations 

are  l isted in Table 11-4 together  with  the  obtained  values of the  minimized  quantity 

A and  the  mean-square  difference E between  the  actual  and  prescribed  patterns. 

Values for N equal to 9 and 10 are  given;  the  difference  between A and AIo is a 

measure of  how close the result is to the  limit N "* 00. Also  listed are the  quality 

factors  defined by Eqs. (2.54) and (2.55). 

9 
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ka = 15 

A A E I-1 
9 9 10 

E 

0.1 0.379 0.379 0.282 0.282 
0. 01 0.213 0.213 0.157 0.157 

0. 1 0 . 1 3 3  0.127 0. 075 0. 064 
0. 01 0.051 0.041 0. 036 0.025 

CY=l 

p =7r 
cy = 2  

0. 1 0.163 0. 163 0. 081 0. 081 
0.01 0.055 0. 055 0. 035 0. 035 

1 0.098 0.098 0.040 0. 040 
0.1 0.031 0. 030 0. 019 0. 017 

ff=l 

p = 2  
cy = 2  

QIO 

1.85 
7.74 

0. 78 
1.76 

1.09 
2 .22  

0. 07 
0. 14 

f 
0.176 
0.437 

0.140 
0.174 

0.138 
0. 178 

0.077 
0. 083 
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111 

ARRAYS OF AXIAL AND CIRCUMFERENTIAL HALF-WAVELENGTH SLOTS 
ON AN INFINITE CIRCULAR METAL CYLINDER 

3.  1 Introduction 

In this section,  the  case of an  array of either axial or  circumferential  slots 

uniformly  spaced  around  the  circumference of an  infinite  metal  cylinder is con- 

sidered. All slots  are  assumed  to  be half a wavelength  long  and  very  narrow, so 

that  the  voltage  distribution  along  them is sinusoidal. A good fore-and-aft  coverage 

is then  achieved  in  the  case of circumferential  slots  and,  to a lesser degree,  also 

for  axial  slots.  The  realization of a nearly  omnidirectional  pattern  in a plane  per- 

pendicular  to  the  axis of the cylinder  (azimuthal  plane) is difficult to obtain  whenever 

the  cylinder  radius is large  compared  to  the wavelength; the  considerations  which 

follow are  therefore  directed  to  the  synthesis of this azimuthal  pattern. 

If all  the  feeding  voltages  across  the  centers of the  slots  have  the  same  ampli- 

tude and phase,  then  the  best  mean-square  approximation  to an omnidirectional 

azimuthal  field  pattern is achieved. In the following sections,  formulas are derived 

which give  the  minimum  mean  squared e r r o r  between the  preassigned and the  actual 

patterns, as well as the  feeding  voltage  necessary  to  produce a far field of pre- 

scribed  intensity. 

Computations  were  carried  out  for  both  the  mean  squared  error  and  the  feeding 

voltage.  The  numerical results are tabulated  and  plotted  below  for a number of 

slots, N, varying  from 2 to 6, and for  values of ka  varying  from 9.00 to 21. 75 

(k = 27r /X is the  free  space wave  number, and a is the  radius of the  cylinder).  In 

general, a smaller  mean  squared  error is obtained  when  the  number of slots is in- 

creased,  for  a given  value of ka.  However,  the  computed results for  the  case of 

axial  slots show that  this  rule is not  always  valid. 

Finally, it is shown how to obtain  an  omnidirectional  equatorial  pattern  having 

a  preassigned  elliptical  polarization by alternating axial and circumferential  slots 
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around  the  cylinder  and by properly  choosing  the  amplitudes  and  the  relative  phase 

of the two feeding  voltages. In particular, a circularly  polarized  equatorial  pattern 

can  be  obtained  in this way. 

3 . 2  Array of Axial Slots 

Let  us  consider an a r r ay  of N half-wavelength  axial  slots  equally  spaced 

around  the  circumference of an  infinite  circular  metal  cylinder of radius a su r -  

rounded by free  space.  Let us introduce a system of spherical  polar  coordinates 

(r, 8 ,  @) connected  to  the  orthogonal  Cartesian  coordinates (x, y, z) of Figure 3-1 

by the  usual  relations x = r sine  cos q ,  y=r   s in  e s i n  $, z=r   cos  e. 
The  slots  are  symmetrically  located with respect to the  plane z = 0. If \ve in- 

dicate by 2 CY the  angular width of each  slot as seen  from  the  cylinder  axis, and 

assume  that  the first slot is centered at @ = 0, then  the  electric  field  produced by 

the 6th  slot  has, at a large  distance  from  the  cylinder, only a @-conq)onent  which 

i n  the  equatorial  plane 8 = 7r/2 is given by the  well known formula  (see,  for  example 

Wait, 1955): 
7 

where 

p =sin(mcr)/(mcu), m ( 3 . 2 )  

k=2n/X is the free space  wave  number, 9 is the  voltage  across  the  center of the 

1 th  slot  (that is, the  product of the  $-component of the  electric  field at the  center of 

the l t h  slot  times  the width of the  slot), d o = l ,  dwl=2,  and the  prime  indicates  the 

derivative of the Hankel  function  with respect  to its argument  ka. 
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The  far  field E due  to  the a r r ay  of slots is obtained  by  adding  together  the PI 
fields  produced  by  each  slot: 

where E is a  normalizing  constant with  the  dimensions of an  electric  field  inten- 

sity, and the  field  pattern P(g) is given by 
a 

-im 2" 
a3 hme 

P(@= x PmFm(pI) , 
m=o H(l)'(lta) m 

and 

= -5"- 
T aE a 

The  coefficients A a r e  to be chosen in such  a way as to  approximate  the  pre- 1 
assigned  far  field 

as closely as possible.  The  mean  squared  error  between  preassigned and actual 

patterns is defined by the  relation 

5 5  



We want to choose A so  that E be  minimum; a simple  calculation shows that we 

must  take 
e 

where 
3 

If the  coefficients A a r e  chosen  according to (3.9),  then the mean  squared  error 

assumes its minimum  value: 
e 

EA=mnin c = B/(l+B) . 

From (3 .  6) and (3. 9) it follows  that 

(3. 11) 

( 3 .  12) 

where V =V =V = -  . . =V is the  voltage  across  the  center of each  slot. Formula 

(3.12)  gives  the  feeding  voltage as a function of frequency,  cylinder  radius and 

number of radiating  slots  for  every  preassigned  value of the far field  intensity. 

a 1 2  N 

Computations of both EA and I VA( were  performed  with  the  aid of the IBM 7090 

computer at The  University of Michigan, for  the  parameter  values  ka=9. OO(0.25) 

21. 75 and N=2(1)6. In these  calculations,  the  slot was assumed  to  be of infinitesi- 

mal  width, that is, the  quantity was taken as equal  to  unity  for all values of 

m and N. Since Wait (1955) has shown that  the  difference  between  the  radiation  pat - 

tern of a slot  whose  width is less than  about  one-tenth of a wavelength and the 

mN 
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radiation  pattern of a slot of infinitesimal  width is negligible,  we  may  conclude  that 

the  numerical  results  obtained  under  the  hypothesis CY = 0 remain  valid  for all 

CY& i~ /(lOka) radians. 

The  numerical  results  are  tabulated in Section  3.4;  only three or four  figures 

of the  seven  that  were  ,obtained  for  each  number a r e  given.  The same results a r e  

plotted in  Figs. 3-2 and  3-3.  It is seen  that  for a given N, the  dimensionless  para- 

meter lVAl tends  to  decrease  as ka increases,  whereas EA increases  with ka; also, 

bothlVA1 and EA present an oscillatory  behaviour  which  becomes  more  and  more pro- 

nounced as N increases. For a given  ka,  the  mean  squared  error EA generally  de- ' 

creases  when the  number of slots is increased;  however, it is easily  seen  from  Fig. 

3-3 that  this is not always  the  case:  for  example,  the  mean  squared error for  five 

slots is less  than that  for six slots  in  the  range  11.5<ka<13. 

The  radiation  pattern  corresponding  to  the  minimum  mean  squared  error is 

(3.13) 

where 7 l  -imN ;i 
c, 

03 Pme 
b(g)=ZH(l)l(ka)  cos  (mNg) . 

0 m=l H(l)' (ka) 
mN 

(3. 14) 

The  pattern  (3. 13) is symmetrical  with  respect  to = 0 and periodic with  period 

2 7 ~  /N; it is therefore  sufficient  to  calculate it in  the  range 0 6 S n-/N . 

3.  3  Array of Circumferential  Slots 

Let us now consider an a r ray  of N half-wavelength  circumferential  slots  equal- 

ly  spaced  around  the  circumference of the  infinite  metal  cylinder of Fig.  3-4. If 

the first slot is centered at @ = 0, then  the  electric  field  produced by the 1 th  slot 

has,  at a large  distance  from  the  cylinder, only a z-component  which  in  the 
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equatorial  plane 8 = 7r /2 is given by the  formula  (Papas, 1950) 

\\-her e n1 7r 
cos (-) 2ka 

'm= 2 2 ' 
(ka) -m 

(3.16) 

and is the  voltage  across  the  center of the I t h  slot  (that is, the  product of the 

z-component of the  electric-  field at the  center of the  slot  times  the width of the  slot). 

The far field  due  to  the  array of N slots is then  given by 

N ikr 
E = EZ,p= Ec 7 e 

Z p(p I A =1 
(3. 17) 

where E is the  normalization  constant  with  the  dimensions of an electric  field in- 

tensity, and 
C 

with 

The  mean  squared  error  between  the  preassigned far field 

(3 .  18) 

(3. 19) 

(3.20) 

(3.2 1) 
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and the  actual far field  (3.17) is mininezed by choosing 

where 

If the  coefficients A a r e  chosen  according  to  (3.22),  then it follows  that 
- 

R 

EC = inin c = C/(l+C) , 

V 7~ kaH(')(ka)e 
and that is 

vc = -  = C 0 

XE 2N( 1+C) 
C 

(3.22) 
- ..- 

(3. 23) 

N H  

where Vc=V1=V2=- . . = V  is the  voltage across the  center of each  slot.  Formula 

( 3 .  25) gives  the  feeding  voltage as a function of frequency,  cylindcr  radius and num-  

ber of radiating  slots  for  every  preassigned  value of the far field  intensity. 

& 

N 

Computations of EC and I V C I  were  carried  out  using tile same values of l a  

and N that  were  previously  adopted in the  case of axial  slots.  The  numerical 

results are tabulated in Section  3.4 and plotted  in  Figs. 3-5 and 3-G. It is seen 

that IV C I decreases  rapidly as ka increases,  for a given N. If N i s  not large, then 

VC is almost  independent of N: the  curve of lVCl as a function of ka for a given 

N exhibits  small  oscillations  about  the  curve N=2,  whose  amplitudes  appear  to  in- 

crease as N becomes  larger. 

The  minimum  mean  squared  error EC increases  with  ka  for a given N, and 

decreases as N increases for a given  ka  (Fig. 3-6). 
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FIG. 3-6: MINIMUM  MEAN  SQUARED ERROR FOR CIRCUMFERENTIAL SLOTS 



The 

given by 

where 

radiation  pattern  corresponding to the  minimum  mean  squared  error is 

(3. 26) 

(3. 27) 

As  in the  case of axial  slots,  the  pattern  (3.26) is symmetrical with respect  to g = O  

and periodic with period 27r /N, and it is therefore  sufficient  to  calchlate it in the 

range 0 < 9 4 7r /N.  
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3.4 Numerical Results 

ka 

9.00 

9. 25 

9.  50. 

9.75 

10.00 

10.25 

10.50 

10.75 

N VA- lo4 VC- 104 EA- 103 EC- lo3 
2 1366 2 774 92 7 852 
3 1313 2 772 895 779 
4 1391 2 770 852 705 
5 1315 2 788 826 629 
6 1693 2 778 731 556 
2 1337 2 741 9 30 856 
3 1321 2 740 896 784 
4 1418 2 740 851 712 
5 12  15 2 748 841 639 
6 1703 2757 733 566 
2 1315 2 709 9 32 8 60 
3 1333 2 709 897 789 
4 1436 2711 852 719 
5 1149 2710 852 649 
6 1692 2 734 7 38 5 75 
2 1300 2 678 9 34 863 
3 1343 2 679 897 795 
4 1440 2 682 853 726 
5 1115 2 673 858 658 
6 1654 2 708 747 584 
2 1291 2 648 9 35 866 
3 1343 2650 899 799 
4 1425 2653 856 732 
5 1106 2 640 861 666 
6 1586 2681 7 60 594 
2 1282 2619 936 8 69 
3 1329 2 620 901 804 
4 1388 2 624 8 62 7 38 
5 1115 2 608 861 6 75 
6 1488 2652 7 78 603 
2 1269 2592 9 38 8 72 
3 1301 2592 9 04 808 
4 1333 2595 869 744 
5 1135 2579 8 60 682 
6 1370 2 620 798 613 - ... 
2 1250 2565 939 8 75 
3 1262 2565 908 813 
4 1266 2567 877 750 
5 1162 2552 859 689 
6 1250 2588 818 622 
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ka 

11.00 

11.25 

11.50 

11.75 

12.00 

12.25 

12.50 

12.75 

- N ~ ~ ~ 1 0 4  vc- lo4 EA- 103  EC.  103 
2 1228 2538 941 8 78 
3 1220 2538 912 817 
4 1201 2539 885 756 
5 1193 2528 857 696 
6 ~. ~~~- 1143 2555 835 631 
2 1208 2513 943 880 
3 1184 2513 916 82 1 
4 1148 2512 891 76 1 
5 1223 2505 855 702 
6 1061 2523 8 49 640 
2 1193 2489 944 883 
3 1161 2488 918 824 
4 1112 2487 895 766 
5 1253 2 484 853 708 
6 1008 2 492 858 648 
2 1183 2465 945 885 
3 1149 2 464 920 828 
4 1093 2462 898 771 
5 1278 2463 85 1 713 
6 0980 2462 863 656 

3 1149 2441 92 1 831 
4 1094 2439 899 776 
5 1298 2443 85 1 719 
6 0973 2434 866 664 
2 1167 2 41 9 - .  947 890 
3 1154 2419 92 1 8 35 
4 1103 2416 900 780 
5 1309 2423 85 1 72 4 
6 0980 2407 866 671 
2 1156 2397 9 48 892 
3 1160 2397 922 838 
4 1119 2 395 899 784 
5 1308 2403 853 72 9 

2 1176  2-442  946  888 

6 0997 2382 8 65 677 
2 1142 2376 949 894 
3 1163 2376 922 841 
4 1137 2 375 898 788 
5 1292 2383 856 7 34 
6 1019 2360 8 64 684 
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ka 

13.00 

13.25 

13.50 

13. 75 

14.00 

14.25 

14.50 

14.75 

- N VA. lo4 VC. 104 EA. lo3 EC. lo3 
2 1126 2355 950 896 
3  1160 2 355 92 3 844 
4 1154 2 355 898 79 1 
5  1259 2 362 861 739 
6  1045 2 339 861 689 
2 1111 2 334 951 898 
3  1147 2 335 925 846 
4  1168 2335 898 795 
5  1210 2 341 8 68 743 
6 1073 2 320 859 695 
2 1100 2315 952 899 
3  1126 2315 92 7 849 
4 1174 2316 898 799 
5  1151 2 320 8 75 748 
6 1101 2 302 857 700 
2 1092 2295 953 90 1 
3 1100 2295 929 852 
4  1171 2297 899 802 
5  1089 2299 883 75 3 
6  1128 2286 855 705 
2 1086 2276 954 902 
3  1074 2277 931 854 
4  1156 2278 901 806 
5  1032 2278 890 757 
6 1153 2270 853 709 
2 1079 2258 954 904 
3 1053 2258 933 857 
4  1130 2260 904 809 
5  0989 2258 896 761 
6  1176 2255 851 714 
2 1069 2240 955 906 
3  1039 2240 9 35 859 
4  1095 2241 908 812 
5  0961 2238 899 765 
6  1195 2241 850 718 
2 1057 2223 956 908 
3 1033 2223 936 861 
4  1056 2223 912 815 
5  0947 2220 902 769 
6  1208 2227 8 49 722 

~- 
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ka 

15.00 

15.25 

15.50 

15. 75 

16.00 

16.25 

16.50 

16. 75 

N VA. l o4  VC- lo4  EA- 103 EC- lo3 
2 1045 2206 957 909 
3 1033 2206 936 864 
4 1019 2206 916 8 18 
5 0946 2202 903 773 
6 1215 2212 850 72 6 
2 1034 2 189 958 911 
3 1036 2 189 937 866 
4 0990 2 189 919 82 1 
5 0954 2 185 903 777 
6 1212 2197 852 731 
2 1026 2 173 958 9 12 
3 1039 2 173 937 8G8 
4 0972 2172 92 1 824 
5 0967 2169 902 780 

~~ 6 1196 2 182 855 735 
2 1020 2157 959 913 
3 1039 2157 937 8 70 
4 0965 2156 922 827 
5 0985 2 153 90 1 783 
6 1168 2167 859 739 

3 1035 2 142 938 8 72 
4 0966 2 140 923  830 
5 1003 2 139 900 78 7 

~ 6 1126 2151 865  743 
2 1007 2126 9 60 916 
3 1024 2 126 930 8 74 
4 0973 2 125 923 8 32 
5 1022 2 125 899 790 

~ ~~ 

.- 

2 1014 2141 9 GO 914 

6 1074 2 134 8 73 746 
2 0999  2111  961  917 
3 1008  2111 
4 0983  2111 
5 1039  2111 
6 1016  2118 
2 0990  2097 
3 0990  2097 
4 0995  2097 
5 1053  2097 
6 0960 2 101 

941  876 
923 8 34 
898  793 
880 750 
961  918 
9 42 877 
922 836 
897 796 
888 754 
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.. . . . ... . . . . . . .. . . . - . . . . ". . . . 

ka 

17.00 

17.25 

17.50 

17. 75 

18.00 

18.25 

18.50 

18. 75 

- N VA. lo4 VC. lo4 EA. 103 EC. lo3 
2 0980 2082 9 62 919 
3 0972 2082 944 8 79 
4 1005 2083 922 839 
5 1062 2084 897 798 
6 091 1 2085 894 758 
2 0971 2068 9 63 92 1 
3 0958 2068 9 45 881 
4 1012 2069 922 841 
5 1064 2071 898 80 1 
6 oa 75 2068 899 762 
2 0965 2054 963 922 
3 0949 2054 946 882 
4 1014 2055 92 3 843 
5 1059 2057 899 804 
6 085 1 2053 903 765 
2 0959 2041 964 923 
3 0945 2041 9 46 884 
4 1009 2 042 924 845 
5 1044 2044 90 1 806 
6 0840 2038 905 768 
2 0954 2028 9 64 924 
3 0945 2028 947 885 
4 0996 2028 925 847 
5 1020 2030 904 809 
6 0839 2023 905 7 72 
2 0949 2015 965 925 
3 0947 2015 947 887 
4 0976 2015 92 7 8 49 
5 0988 2017 908 812 
6 0845 2009 905 775 
2 0942 2002 9 65 926 
3 0949 2002 947 889 
4 0952 2002 929 85 1 
5 0952 2003 912 8 14 
6 0856 1996 905 778 
2 0934 1990 966 92 7 
3 0947 1990 9 48 890 
4 0926 1989 932 85 3 
5 0916 1990 916 817 
6 0871 1984 904 78 1 
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ka 

19.00 

19.25 

19.50 

19.75 

20.00 

20.25 

20.50 

20. 75 

N VA- l o 4  VC- lo4  EA- lo3 EC. 103 
2  0926 1977 966  928 
3 0 942 1977 9 48 89 1 
4 0904 1977 934  855 
5  0884 1977 919  819 
6  0888 1972 903  783 

3  0933 1965 949 893 
4  0886 1965 936 857 
5  0861 1964 922 82 1 
6  0905 1961 901 786 
2 09'1 3 1953 967 929 
3  092 1 1953 950 894 
4  0876 1953 937 859 
5  0846 1952 924 824 
6  0923 1950 900 789 
2 0909 1942 967 930 
3  0907 1942 951 805 
4  0872 1941 937 861 
5  0839 1940 925 82 G 
6  0940 1940 899 79 1 
2 0904 1930 9 68 931 
3  0895 1930 952 89 7 
4  0874 1930 938 863 
5  0840 1929 925 828 
6  0955 1930 898 793 
2 0899 1919 9 68 932 
3  0885 1919 953 898 
4  0879 1919 9 38 8 64 
5  0847 1917 925 830 
6  0968 1920 897 79 6 

3  0879 1908 954 899 
4  0887 1908 9 38 865 
5  0857 1907 925 832 
6  0978 1910 897 798 
2 0886 1897 969 934 
3 0876 1897 954 900 
4  0894 1897 937 867 
5  0869 1896 924 834 
6 0984 1900 897 800 

2 0919  1965  967 929 

2 089  3  1908 969 933 

~~ ~- 
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- ka - N VA. lo4 VC- 104 EA- lo3 EC- 103 
2 0880 1887 969 934 
3 0876 1887 954  901 

21.00 4 0901 1887 937  869 
5 0882 1886 923  836 
6 0984 1890 897  803 
2 0874 1876 9 70 9 35 
3 0877 1876 954  903 

21.23 4 0904 1877 937 8 70 
5 0894 1876 923  838 
6 09 78 1880 898  805 
2 0869 1866 9 70 936 
3 0878 1866 955 904 

21.50 4 0904 1866 9 38 8 72 
5 0904 1866 922 8 39 
6 0964 1870 900 807 
2 0865 1856 9 70 936 
3 0876 1856 955  905 

21. 75 4 0898 1856 9 39 873 
5 0912 1856 922 841 
6 0943 1860 903  809 
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3.5 Array of Axial and Circumferential  Slots , 

An elliptically  polarized far field  pattern  in  the  azimuthal  plane may easily 

be  obtained by alternating N uniformly  spaced axial slots and N uniformly  spaced 

circumferential  slots  around  the  cylinder. It is not necessary  to  assume  that  the 

two angles  between  the  center of a circumferential  slot and the centers of the two 

adjacent axial slots, as seen  from  the  cylinder  axis,  be  equal; we shall only 

assume  that  the  angle  between two adjacent  axial  slots,  or between two adjacent 

circumferential  slots, is 27r/N radians  (Fig.  3-7). 

From  formulas  (3. 11),(3. 12),(3. 24)  and (3. 25) i t  follows  that 

(3.28) 

If the  azimuthal  patterns  (3. 13)  and (3.26)  produced by the  axial  slots and b y  the 

circumferential  slots are sensibly  omnidirectional,  then  relation  (3.28)  gives  the 

ratio of the two feeding  voltages as a function of the far field  polarization, for pre- 

scribed  values of N and ka. 

For a linearly  polarized far field,  the  quantity E /E is real. For a c i r -  a c  
cularly  polarized far field,  one  must  choose 

m 

t i  $ 
E /E  = e  a c  , 

and therefore 

(3.29) 

In the case of a large  cylinder,  further  simplification is achieved by observing 
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FIG 3-7: AFtRAY O F  AXIAL AND CIRCUMFERENTIAL 
SLOTS 
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" 

that 

in this case: 

va 1-EA a E 
- 
V 1-EC Ec ' 
"- 

C 

(ka >> 1) ; 

(ka >> 1) . (3. 30) 

3. 6 I___ Final  Considerations 

The  main  results of Section III may  be  summarized as follows. 

a). If all the  feeding  voltages  have  the  same  amplitude and phase,  then  the 

best  mean-square  approximation  to an omnidirectional  azimuthal  field  pattern is 

achieved.; the  actual  optimum  pattern is given by formulas  (3. 13)  and (3.26) . 

b).  The  feeding  voltage as a function of frequency,  cylinder  radius,  number 

of slots and far field  intensity is given by formulas  (3. 12) and (3.25), and is tabu- 

lated  in  Section 3 .4  and plotted  in Figs. 3-2 and  3-5. 

c). A far azimuthal  field  with a prescribed  polarization may  be  obtained 

through  formula  (3, 28), provided  that  the  actual  patterns a r e  sensibly  omnidirec- 

tional. 

The  optimization  process  that  was  used  in this section is based on the  mini- 

mization of the  mean  squared  error (3.8). In order  to  have  some  information on 

the  features of the  patterns  thus  obtained,  computations of P(@) as given by for- 

mula (3 .26)  were  carried  out for the  case of ka = 10 and  five  circumferential  slots. 

The results are plotted  in  Fig. 3-8; it is seen  that  the  amplitude of the  field  pattern 

is quite far from unity. 
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If one is interested only in  approximating  the  power  radiation  pattern,  then  one 

must  conclude  that  the  minimization of the   e r ror  ( 3 . 8 )  does  not  constitute a good 

criterion of optimization. In this case, one  should try  to  minimize  either 

(3. 31) 

0 

where $(@ is a continuous real  function of $j to  be  chosen so that  the  mean  squared 

e r r o r  hetween IP(@I and  unity be minimum, o r  the  mean  squared  error between the 

actual and the  preassigned  power  patterns: 

(3. 32) 

It  appears  that  the  mathematical  difficulties  encountered  in  minimizing E 

cannot  he  overcome  easily, so that it seems  preferable  to  minimize  the  right-hand 

side of ( 3 .  31), e. g. by successive  approximations. One may  choose: 

power 

with P (@ = 1. and determine the &own feeding  voltages  which  appear  in  the  ex- 

pression of P (9) so as to minimize em . The iteration  procedure (3. 33) can  easily 

be  handled by a computer;  however, it remains  to  be  proven  that E converges  to a 

minimum  value of E as m  increases.  Numerical results based  on  the  approxi- 

mation  procedure (3 .33)  have  been  obtained in Section II for the  problem  treated 

there. 

0 

m 

m 



APPENDIX 

Lemma 

For  every  function A@, square  integrable in the  interval -Cy< fi ,<a 
(notation: A($) EL" ) the  corresponding  function P@) defined by 

2 

where 

is an analytic  function. 

We first note that by introduction of the  variable C = eiB, the  Fourier  series 

in Eq.  (A. 2) can be considered as Laurent  series which are convergent  in  every 

region in the  complex  c-plane  defined by 0 < a 6 IS I <  b < 00, where a, b a r e  posi- 

tive  constants.  This is a  consequence of the  asymptotic  behavior of H(')(ka) n and 

H(')'(ka) for ka fixed  and  n "c 03 through real positive  values: 
n 



The  Laurent series in \= represents  an  analytic  function  in  its  region of convergence 

and, since 5 is an  analytic  function of $, K($) is a function  analytic  in  the  entire 

complex  @plane (cf. Whittaker  and Watson,  1927,  p. 160 ff. ). From  this  it  follows 

that P(@ is also an analytic  function  because it has  the  unique  derivative 

Theorem 

If we take  an  arbitrary  set of functions {@,(a)-) complete in L 

and construct a neb  set  of functions ll(@) , where n(@) is the 

P(@) in Eq. (A .  1) which corresponds  to A(@) = @ (@), then  the  set 

{Tn(@$ wil l  be closed  in L That is, there is no function  belong- 

ing to L which is orthogonal  to all (@). 

ff 

2 

C n  1 n 

n 
7r 

2 '  
7r 

2  n 

To  prove  the  theorem, we assume  that  the  contrary is true,  i .e.  that  there 

is a function F(@)E LT such  that  for  every  n 2 

where F"' is the  complex  conjugate of F. It is obvious, by virtue of Fubini's 

theorem,  that we can  change  the  order of integration  in Eq. (A.  4), and  using  the  fact 

that  according  to Eq. (A. 2), K(@) is an  evenfunction we obtain 

J -CY J-T J-CY 

where G ( $ )  is thus  defined as 
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A s  r& (6) is complete  in L Eq. (A. 5) can hold  only if G(@) 0 almost  every- 

where  in  the  interval -CY < f? <a. But due to  Eq. (A. 6 ) ,  G(@) satisfies  the  condi- 

tions in the  Lemma  and is consequently  analytic  in  the  interval -T < @ < 7~ and  thus 

G ( @ )  0 in this whole interval.  Eq. (A .6 )  also  expresses G(@) as the  convolution 

of the  functions K(@) and F"'(@). Thus G(@) I 0 implies  that F'@) vanishes al- 

most  everywhere,  which  proves  the  theorem. 

C n  1 (Y 

2 '  

In L completeness  and  closure are equivalent  and  we  have  the  following 2 
corollary. 

Corollary 

To  every  pair of set  of functions {@A@)} and {FA@ )} as defined  in  the 

theorem  there is a finite set of functions {an]" such  that 
0 

for any given  arbitrary  function F($) E L2 and E >  0. 
7r 

This  means  that if  we consider Eq. ( A .  1) as an  integral  equation  with 

P(@) = F ( 9 )  there  is no solution A ( @ ) € L 2  except when F($) belongs  to a certain 

c lass  of analytic  functions.  However, we can  always  find  an 

a 
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such  that  the  corresponding 

approximates F(9) arbitrary  close in  the  mean  square  sense 
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